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Effects of field interactions upon particle creation in 
Robertson-Walker universes 

N D Birrell, P C W Davies and L H Ford? 
Department of Mathematics, University of London, King’s College, Strand, London 
WC2R 2LS, UK 

Received 27 July 1979 

Abstract. Particle creation due to field interactions in an expanding Robertson-Walker 
universe is investigated. A model in which pseudoscalar mesons and photons are created as 
a result of their mutual interaction is considered, and the energy density of created particles 
is calculated in model universes which undergo a bounce at some maximum curvature. The 
free-field creation of non-conformally coupled scalar particles and of gravitons is calculated 
in the same space-times. It is found that if the bounce occurs at a sufficiently early time the 
interacting particle creation will dominate. This result may be traced to the fact that the 
model interaction chosen introduces a length scale which is much larger than the Planck 
length. 

1. Introduction 

Existing investigations of quantum fields in curved space-time have been mainly 
confined to massless free fields. In these treatments the only length scale present is the 
Planck length, so most of the important back-reaction is confined to the Planck regime 
where the semiclassical approximation of ignoring higher order quantum gravity 
corrections is invalid. The introduction of a particle mass into the theory provides a 
further length scale, but this frequently makes little difference as may be seen on 
dimensional grounds. Massless terms in the stress tensor for the quantum field are 
typically proportional to R 2 ,  the square of the scalar curvature, whereas mass- 
dependent terms occur of the form m2R and m4. For the latter to dominate the former 
one demands m b [RI 1’2. In a Robertson-Walker universe this condition is m 3 c-’. 
However, on general grounds one expects important quantum field effects (relative to 
other matter) only when IR I ’” 6 m anyway. 

An additional length scale may be introduced into the theory by including the effect 
of field interactions. In general, one expects that interactions may significantly affect 
such processes as cosmological particle creation. Birrell and Ford (1979) have recently 
investigated such effects in particular models. In the present paper we consider 
additional models for the purpose of comparing interacting field particle creation with 
free-field particle creation. One might expect that if the interaction introduces a length 
scale which is large compared with the Planck length, then the interacting particle 
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creation will dominate the free-field contribution. Our results support this conjecture. 
In particular it becomes possible for the universe to undergo a ‘bounce’ while still many 
orders of magnitude away from the Planck regime. 

2. The 7 t O - 2 ~  model 

A simple model interacting-field theory is that of a massless pseudoscalar field 
interacting with the electromagnetic field. This is a simplified version of the interaction 
between neutral pseudoscalar pions and photons, for which a semi-phenomenological 
theory has long been known. Of course, the theory is probably not renormalisable, and 
is only an approximation of a more fundamental theory involving quarks, but we take it 
here at face value, at least to illustrate the possibilities. In any case, questions of 
renormalisability do not arise in this calculation as only tree diagrams are considered. 

In first-order perturbation theory in the absence of gravity, T O  decays into two 
y-rays with a lifetime of about P O  l6  s (figure 1). When a gravitational field is present, 
the process shown in figure 2 may occur, in which two photons and a IT’ are 
simultaneously created from the gravitational field energy. The T O  subsequently 
decays, leaving four photons. The process is therefore a source of cosmological 
photons, and interest attaches to whether this process is more efficient at producing 
photons than other processes in which conformal symmetry is broken (e.g. by depar- 
tures from Robertson-Walker symmetry). The assumption that the pion mass is zero 

H 

Figure 1. The decay of a .no meson into two photons. 

Y Y 

Figure 2. The creation of a .no meson and two photons from the vacuum. 
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should be a good approximation for treating particle creation in regions of space-time 
where the curvature is larger than about loz6 cm-'. In such a situation, the mean energy 
of the created particles will be large compared to the pion rest mass. 

Following Schwinger (1951) we work with an interaction Lagrangian of the form 

2 = /3 "Ffi,,.Ffivq5 (2.1) 
where Ffiv is the electromagnetic field strength tensor, the asterisk denotes its dual and 
4 is the massless pseudoscalar field. The coupling constant p has dimensions of length, 
and is known from observations of T O +  27  decay to be 

(2.2) p = 1.21 x 10-l~ cm. 

We work with a spatially flat Robertson-Walker metric in conformally flat form 

ds2 = a2(q)(dq2-dX2) (2.3) 

with a conformally coupled pseudoscalar field so that as far as the free fields are 
concerned the problem is conformally trivial. Only the coupling breaks the conformal 
symmetry, and this we can handle using perturbation theory. The first-order S matrix is 
given by 

where E and B are the Minkowski space electric and magnetic field vectors, respec- 
tively. Expanding these in plane waves as usual, 

(2.5a) 

(2.Sb) 

where V is a normalisation volume, and & ( A  j is a unit polarisation vector. 

q5 =E V-"' a--' [bk exp(ik.x-ikq)+bL exp(- ik .x+ikq)] .  (2.6) 

We wish to evaluate the S-matrix amplitude for two photons and a pion to be 

Similarly the scalar field may be expanded: 

k 

created from the vacuum. This will be 

(ki, A i ;  kz,  A z ;  k 3  IS"'I0) 

=4ip  d4x J < U - ~ ( ~ I , A ~ ;  k2 ,A l ;  k3 I (E.B)dIO). (2 .7 )  I 
Substituting (2.5) and (2.6) into (2.7) and performing the integral over the space-like 

surface orthogonal to the conformal Killing vector d /dq ,  we obtain 

30 

fikz(hz) (ki A t k , ( A i ) ) I  I, d77a-l exP[i(wi+W2-W3)77]. 

The Kronecker delta expresses the conservation of momentum among the created 
particles. 
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To compute the number of particle triplets created per unit proper volume we must 
consider l (S (1 ) ) /2 .  The total number of particles of all momenta and polarisations may 
then be computed by summing over A 1  and A z ,  and k l ,  k Z ,  k3 .  The polarisation sums 
may be performed explicitly: 

(2 .10)  

where 
cu 

f(a) = I-, dq a- ’ (q )  e-’““. 

Passing to the continuum limit and performing the k 3  integration yields 

where 
w3 = [w:  + U :  + 2 k l .  kzI1”. 

Greater interest attaches to the total density of created energy, p. This may be 
obtained by inserting the factor a - l ( ~ 1 + ~ 2 + ~ 3 )  in the integrand of (2 .11 ) .  (In 
general, (Too ) contains additional, oscillatory terms which vanish in this case.) 

3. Explicit examples 

It is ?f interest to compute p for a few explicit space-times. One exactly soluble model is 
the case 

a ( d = A 2 + ( d 7 7 0 ) *  (3 .1 )  

where A and T O  are real constants which represents a universe that contracts to a 
minimum value A’ of the scale factor and expands again. In the asymptotic region it 
behaves like a matter-dominated Friedmann universe. Then 

f ( a )  = T ( V O / A )  exp(-.rrlarloAl) 
and 

x ( l - f l .  f ~ ) Z e x p [ - 2 ~ q o A ( w l + ~ z + ~ 3 ) ] ] .  (3 .2 )  
On dimensional grounds the integral is of the form: constant/(q0A)8. We used the 
MACSYMA algebraic manipulation program at MIT to evaluate the integral, which 
yielded a value 1 0 5 / 4 ( 2 ~ ) ~  for the constant. Thus 

105p2  
P =  4( 2 ~ )  12q ;A loa 4‘ 

( 3 . 3 )  
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The answer may be expressed in a more meaningful form by introducing the 
parameter R B ,  the scalar curvature at the ‘bounce’ where a ( 0 )  = A2 = uB.  The scalar 
curvature of the metric equation (3.1) is 

R = 127702(A2+7702772)-3 (3.4) 
so that 

R B  = 12770’ A-6. 

Then 
4 5 

105p2 R;(F) . 
6912(2r)”  now 

P n o w  = 

(3.5) 

(3.6) 

Inserting the value (2.2) for p yields 

pnow = 2.1 x R i  ( a B / a n o w ) 4  g cme3 (3.7) 

where R B  is in cm-’. For pnow to be comparable with the present energy density of 
background photons-about g ~m-~- the  bounce must occur at dimensions 
several orders of magnitude larger than those characterised by the Planck length. For 
the purpose of obtaining an order of magnitude estimate, we may let RB = (3t;)-’ and 
aB/anow = (tB/tnow)’l3 (although the asymptotic forms R - t T 2  and U - t2’3 are only 
strictly valid if t >> tB). We then find that the bounce is characterised by tB = lopz6 cm -- 

s, about seven orders of magnitude larger than the Planck length. 
Another soluble model is given by the scale factor 

(3.8) 

If 7 >> T ~ ,  this metric approximates that of a radiation-filled Friedmann universe. Here 

2 1/2 a ( 7 )  = [ a i  + ( ~ / m )  I . 

f(a) = 27?oKo(aB7?oa) (3.9) 

where KO is a modified Bessel function. The integrations on d3kl and d3kz may again be 
performed; the result is of the same form as equation (3.7) aside from the numerical 
coefficient: 

p = 5 x R ;  ( a B / a ) 4 .  (3.10) 

(As before, p is in g cm-3 and R B  in cm-’.) The scalar curvature at 77 = 0 is in this case 
given by 

(3.11) 

Let us consider a universe in which the metric is given by equation (3.8) until 

R B -  - 6  770 - 2  aB -4 * 

approximately the recombination time. Then the present energy density will be 

(3.12) 

where aR/anow = The energy density at recombination time, p ~ ,  is given by 
equation (3.10) with a = uR. If we again let pnow be equal to the energy density of the 
3K cosmic background, we find that the bounce is characterised by the dimensions of 

f B  2. s = io-23 cm. (3.13) 

4 
Pnow = PR(aR/anow) 
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4. Non-conformally invariant free-field particle creation 

There are two important features of the ~ ' - 2 7  particle creation. One is the non- 
conformal invariance of the interaction Lagrangian (2.1) which allows particle creation 
to occur in the massless limit. The other is the presence of a coupling constant with 
dimensions which introduces an additional length scale into the theory. For comparison 
let us consider a non-interacting scalar field in Robertson-Walker models with a 
bounce. Let C#J satisfy 

06 +rRq5 = 0. (4.1) 

If 6 # 4, the conformal invariance i s  broken without the introduction of a length scale. 
Gravitational wave perturbations in a Robertson-Walker backgi ound satisfy (4.1) with 
[ = 0 (Grishchuk 1974), so this model also describes graviton creation in an expanding 
universe. It is not possible to treat this problem exactly, so we use the perturbation 
method of Davies and Unruh (1979) which assumes that (5 - 2) R is small. The extent to 
which this is a good approximation will be discussed below. We shall also present the 
results of a numerical calculation which does not require this assumption. 

Davies and Unruh have evaluated ( Twv) at all times for arbitrary Robertson-Walker 
universes. We specialise their result to late times, where space-time approaches 
flatness; in this limit the energy density is 

00 1 "  
P = --- I_, d771 I-, d772g1(771)g'(772) lnl771- 7721 (4.2) 

where g = ARu' and A = 5 -2. This is the result for scalar particle creation; the density 
of gravitons created is obtained by setting 5 = 0 and multiplying (4.2) by a factor of 2 to 
account for the two polarisation degrees of freedom. 

If we let the metric be either that given by (3.1) or (3.8), the integral in (4.2) may be 
evaluated (by use of MACSYMA). The result in both cases is 

p = K A ~ R ;  (aB/a)4. (4.3) 

The numerical coefficient K depends upon the details of the metric; for the scaie factor 
(3.1) it is 

K(3.1) =&=7.813 x lop3  (4.4) 

K(3.8) = i i & = 8 * 7 8 9 ~  (4.5) 

and for the scale factor (3.8) it is 

Let us now analyse the validity of the perturbation method. It assumes that 

lim lIl<< 1 
n-'m 

where 

I = k-' g(vl)  sin k(77 -ql)  dv. 

Let us consider the particular metric given by equation (3.1). Here 

I_: 

(4.6) 

(4.7) 

(4.8) ikq -e-ik.rl I = - ( e  1 2 )  2ik 
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where, as 7 -$a, 

and 

(4.9) 

(4.10) 

(4.11) 

If 6 = 0, then the criterion (4.6) is satisfied for values of k such that 

k 3 2 7 r ( ~ & - ' .  (4.12) 

This is of the order of the typical momenta associated with the particles created in this 
model. Hence the perturbation treatment is at the edge of its limits of validity in this 
application. 

An. alternative means of obtaining the free particle energy density is to use the 
momentum space formulation of Birrell (1979). In this approach the energy density is 
given in terms of an integral involving a ' T  matrix'. This T matrix is obtained as a 
solution of a Lippmann-Schwinger type equation with potential equal to the Fourier 
transform of the quantity g in (4.1). One method of approximately solving this 
Lippmann-Schwinger equation is to use the first Born approximation. This can be 
shown to yield the approximate energy density (4.1). Another, much more accurate, 
technique is to solve the equation numerically, as discussed by Birrell (1979). This has 
been done for the case 6 = 0 and the scale factors (3.1) and (3.8), giving results which we 
believe to be accurate to within about 10%. The numerical results give the propor- 
tionality coefficient in (4.2) as 

K(3.1) = 5.4 x (4.13) 

~ ( 3 . 8 )  = 3.4  x 1 0 - ~  
and 

(4.14) 

for the scale factors (3.1) and (3.8), respectively. Comparison of these coefficients with 
those in (4.4) and (4.5) indicates that for the purpose of comparison with the density due 
to ?TO - 2y production the Born approximation is sufficiently accurate. 

Comparison of (3.6) with (4.3) shows that the free-field particle production is below 
that in the ~ ' - 2 y  model unless RB s cm-2, or the associated characteristic length i 
is greater than cm. Let us consider the case where the bounce is characterised by 
Planck dimensions: RB = 

(4.15) 

Thus the energy density of particles at any time is equal to that obtained by assuming a 
density of about 10-4p, (p,  = Planck density = g cmP3) at the Planck time and then 
red-shifting forward to the given time. The energy density (4.15) represents, at the 
present time, a density comparable to that of the 3K cosmic background. This result is 
to be compared with that of fs 3 where it was found that the same present energy density 
could be created in a universe which bounces at dimensions of the order of 10" Planck 
lengths. The much larger result in the interacting field model may be traced to the 
presence of an additional length scale in the theory. 

cm-2. Then (4.3) may be written as 

p i= (io9' g ~ m - . ~ )  (aB/a14.  
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